1067-05-2068 Michael Ferrara, Michael Jacobson, Kevin Milans, Craig Tennenhouse and Paul S Wenger* (paul. wenger@ucdenver.edu), UCD Department of Mathematics, Campus Box 170, P.O. Box 173364, Denver, CO 80217. Saturation Numbers for Families of Subdivisions.

A graph G is \mathcal{F}-saturated for a family of graphs \mathcal{F} if G contains no member of \mathcal{F} as a subgraph, but $G+u v$ contains some member of \mathcal{F} for every $u v$ in \bar{G}. The minimum number of edges in an \mathcal{F}-saturated graph of order n is denoted $\operatorname{sat}(n, \mathcal{F})$. A subdivision of a graph H, is a graph G obtained from H by replacing the edges of H with internally disjoint paths of arbitrary length. We let $\mathcal{S}(H)$ denote the family of subdivisions of H, including H itself.

In this talk, we consider $\operatorname{sat}(n, \mathcal{S}(H))$ when H is a cycle or complete graph. We determine sat $\left(n, \mathcal{S}\left(C_{t}\right)\right)$ asymptotically and provide upper bounds on $\operatorname{sat}\left(n, \mathcal{S}\left(K_{t}\right)\right)$. We also show that $\operatorname{sat}\left(n, \mathcal{S}\left(K_{5}\right)\right)=\left\lceil\frac{3 n+4}{2}\right\rceil$, providing an interesting contrast to a 1935 result of Wagner, who showed that edge-maximal graphs without a K_{5}-minor have at least $\frac{11 n}{6}$ edges. (Received September 22, 2010)

