1067-05-2068

Michael Ferrara, Michael Jacobson, Kevin Milans, Craig Tennenhouse and Paul S Wenger* (paul.wenger@ucdenver.edu), UCD Department of Mathematics, Campus Box 170, P.O. Box 173364, Denver, CO 80217. Saturation Numbers for Families of Subdivisions.

A graph G is \mathcal{F} -saturated for a family of graphs \mathcal{F} if G contains no member of \mathcal{F} as a subgraph, but G + uv contains some member of \mathcal{F} for every uv in \overline{G} . The minimum number of edges in an \mathcal{F} -saturated graph of order n is denoted sat (n, \mathcal{F}) . A subdivision of a graph H, is a graph G obtained from H by replacing the edges of H with internally disjoint paths of arbitrary length. We let $\mathcal{S}(H)$ denote the family of subdivisions of H, including H itself.

In this talk, we consider sat $(n, \mathcal{S}(H))$ when H is a cycle or complete graph. We determine sat $(n, \mathcal{S}(C_t))$ asymptotically and provide upper bounds on sat $(n, \mathcal{S}(K_t))$. We also show that sat $(n, \mathcal{S}(K_5)) = \lceil \frac{3n+4}{2} \rceil$, providing an interesting contrast to a 1935 result of Wagner, who showed that edge-maximal graphs without a K_5 -minor have at least $\frac{11n}{6}$ edges. (Received September 22, 2010)