1067-05-2413 Guantao Chen* (gchen@gsu.edu), Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, Manzhan Gu, Department of Applied Mathematics, Shanghai University of Finance and Economics, Shanghai, Peoples Rep of China, and Nana Li, Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303. On Maximum Cuts of Connected Digraphs. Preliminary report.
Let $D=(V, E)$ be a digraph with a vertex set V and an edge set E. A set $C \subseteq E$ is called a directed cut of D if there is a partition (X, Y) of V such that $C=\{\overrightarrow{x y} \in E: x \in X$ and $y \in Y\}$, that is, C consists of all directed edges from X to Y. Let $D(1,1)$ denote the set of digraphs D such that for each vertex v either $d^{+}(v) \leq 1$ or $d^{-}(v) \leq 1$, where $d^{+}(v)$ and $d^{-}(v)$ are the outdegree and indegree of v, respectively. Clearly, all digraphs with maximum degree at most 3 are in $D(1,1)$. We show that every connected graph of m edges in $D(1,1)$ contains a directed cut of size at least $(3 / 8) m-1 / 8$, which provides a positive answer to a problem of Lehel, Muffray and Presissman. We also give a negative answer to their another problem: If a connected digraph $D \in D(1,1)$ with m edges contains no directed triangles and has s vertices v with $d^{+}(v) \cdot d^{-}(v)=0$, then D contains a directed cut of size at least $(2 m+s) / 5$. (Received September 23, 2010)

