1067-05-312 Jesse Calvert*, Washington University - St. Louis, 1 Brookings Drive, St. Louis, MO 63130, and Michael Schuster, North Carolina State University, Raleigh, NC 27695. The Computation of $R\left(K_{5}-P_{3}, K_{5}\right)=25^{*}$
In 1989, Hendry compiled a table of Ramsey numbers $R(G, H)$ for connected graphs G and H on five vertices. For the Ramsey number $R\left(K_{5}-P_{3}, K_{5}\right)$ he lists the bound $R\left(K_{5}-P_{3}, K_{5}\right) \leq 28$; a lower bound is obtained from the well known result $R\left(K_{4}, K_{5}\right)=25$. In 2009, Black, Leven and Radziszowski showed that the upper bound can be further reduced to $R\left(K_{5}-P_{3}, K_{5}\right) \leq 26$.
Here we prove that $R\left(K_{5}-P_{3}, K_{5}\right)=25$ using computer algorithms, which solves one of the three remaining open cases in Hendry's table, leaving only $R\left(K_{5}, K_{5}\right)$ and $R\left(K_{5}, K_{5}-e\right)$ unknown. In addition, we show that there are no $\left(K_{5}-P_{3}, K_{5}\right)$-good graphs containing a K_{4} on 23 or 24 vertices. The unique ($K_{5}-P_{3}, K_{5}$)-good graph with a K_{4} on 22 vertices is presented. Finally, we use a result by Burr, Erdös, Faudree and Schelp to show that $R\left(K_{5}-P_{3}, \widehat{K}_{5,2}\right)=25$, where $\widehat{K}_{5,2}$ is the graph obtained by attaching a vertex to a K_{5} using 2 edges. (Received August 19, 2010)

