A graph G is k-crossing-critical if the crossing number $\operatorname{cr}(G)$ is at least k, but, for every proper subgraph H of G, $c r(H)<k$. (We ignore vertices with degree 2, as they play no role in the crossing number of a graph.) From Kuratowski's Theorem, the only 1-crossing-critical graphs are the complete graph K_{5} and the complete bipartite graph $K_{3,3}$.

In this project, we prove that if G is 3 -connected, 2-crossing-critical, and has at least ten million vertices, then G has a very special, completely determined, circular structure. The proof shows that if G has a Möbius ladder V_{10} as a minor, then G has the structure. If G has no V_{10}-minor, then it has bounded size.

We know how to determine all the 3 -connected, 2 -crossing-critical graphs with no V_{8}-minor, so what remains to be determined is those with a V_{8}-minor but no V_{10}-minor. (Received September 03, 2010)

