1067-05-440Drago Bokal, Bogdan Oporowski and R. Bruce Richter* (brichter@uwaterloo.ca), Dept.
of Combinatorics & Optimization, University of Waterloo, Waterloo, ON N2L 3G1, Canada, and
Gelasio Salazar. 2-crossing-critical graphs.

A graph G is k-crossing-critical if the crossing number cr(G) is at least k, but, for every proper subgraph H of G, cr(H) < k. (We ignore vertices with degree 2, as they play no role in the crossing number of a graph.) From Kuratowski's Theorem, the only 1-crossing-critical graphs are the complete graph K_5 and the complete bipartite graph $K_{3,3}$.

In this project, we prove that if G is 3-connected, 2-crossing-critical, and has at least ten million vertices, then G has a very special, completely determined, circular structure. The proof shows that if G has a Möbius ladder V_{10} as a minor, then G has the structure. If G has no V_{10} -minor, then it has bounded size.

We know how to determine all the 3-connected, 2-crossing-critical graphs with no V_8 -minor, so what remains to be determined is those with a V_8 -minor but no V_{10} -minor. (Received September 03, 2010)