1067-05-587 Neil Hindman^{*} (nhindman@aol.com). Monochromatic sums equal to products in \mathbb{N} .

Csikvári, Gyarmati, and Sárközy asked whether, whenever the set \mathbb{N} of positive integers is finitely colored, there must exist monochromatic a, b, c, and d such that a + b = cd and $a \neq b$. We provide an affirmative answer, establishing the following much stronger statement, (where FS and FP refer to "finite sums" and "finite products" respectively).

Theorem. Let $m, r \in \mathbb{N}$ with m > 1 and let $\mathbb{N} = \bigcup_{k=1}^{r} A_k$. There exist $k \in \{1, 2, \ldots, r\}$, $d \in \mathbb{N}$, and sequences $\langle x_t \rangle_{t=1}^m$ and $\langle y_t \rangle_{t=1}^m$ such that

- (1) $\langle x_t \rangle_{t=1}^m$ has distinct finite sums;
- (2) $\langle y_t \rangle_{t=1}^m$ has distinct finite products;
- (3) $\sum_{t=1}^{m} x_t = \prod_{t=1}^{m} y_t = d;$
- (4) $FS(\langle x_t \rangle_{t=1}^m) \cup FP(\langle y_t \rangle_{t=1}^m) \subseteq A_k$; and
- (5) $FS(\langle x_t \rangle_{t=1}^m) \cap FP(\langle y_t \rangle_{t=1}^m) = \{d\}.$

(Received September 10, 2010)