1067-05-587 Neil Hindman* (nhindman@aol.com). Monochromatic sums equal to products in \mathbb{N}.
Csikvári, Gyarmati, and Sárközy asked whether, whenever the set \mathbb{N} of positive integers is finitely colored, there must exist monochromatic a, b, c, and d such that $a+b=c d$ and $a \neq b$. We provide an affirmative answer, establishing the following much stronger statement, (where $F S$ and $F P$ refer to "finite sums" and "finite products" respectively).

Theorem. Let $m, r \in \mathbb{N}$ with $m>1$ and let $\mathbb{N}=\bigcup_{k=1}^{r} A_{k}$. There exist $k \in\{1,2, \ldots, r\}, d \in \mathbb{N}$, and sequences $\left\langle x_{t}\right\rangle_{t=1}^{m}$ and $\left\langle y_{t}\right\rangle_{t=1}^{m}$ such that
(1) $\left\langle x_{t}\right\rangle_{t=1}^{m}$ has distinct finite sums;
(2) $\left\langle y_{t}\right\rangle_{t=1}^{m}$ has distinct finite products;
(3) $\sum_{t=1}^{m} x_{t}=\prod_{t=1}^{m} y_{t}=d$;
(4) $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{m}\right) \cup F P\left(\left\langle y_{t}\right\rangle_{t=1}^{m}\right) \subseteq A_{k}$; and
(5) $F S\left(\left\langle x_{t}\right\rangle_{t=1}^{m}\right) \cap F P\left(\left\langle y_{t}\right\rangle_{t=1}^{m}\right)=\{d\}$.
(Received September 10, 2010)

