Let \mathfrak{S}_{n} denote the symmetric group of all permutations of $1,2, \ldots n$, partially ordered by the weak Bruhat order. Thus for any permutation $w \in \mathfrak{S}_{n}$, the rank $\ell(w)$ of w is the number of inversions in w. It follows that the rank-generating function of \mathfrak{S}_{n} is

$$
F\left(\mathfrak{S}_{n}, q\right)=\sum_{w \in \mathfrak{S}_{n}} q^{\ell(w)}=(n)!,
$$

where $(n)=(1)(2) \cdots(n)$ and $(i)=1+q+q^{2}+\cdots+q^{i-1}$.
For any $w \in \mathfrak{S}_{n}$, we define two graded posets associated with $w: \Lambda_{w}=\left\{v \in \mathfrak{S}_{n}: v \leq w\right\}$ and $V_{w}=\left\{v \in \mathfrak{S}_{n}: v \geq w\right\}$. In V_{w}, we define the rank of v to be $\ell(v)-\ell(w)$. We will show that if w is separable (i.e., 3142 and 2413 -avoiding), then there is the surprising formula

$$
F\left(\Lambda_{w}, q\right) F\left(V_{w}, q\right)=(n)!
$$

Moreover, we define a bijection $\varphi: \Lambda_{w} \times V_{w} \rightarrow \mathfrak{S}_{n}$ satisfying $\ell(u)+\ell(v)-\ell(w)=\ell(\varphi(u, v))$, and we give an explicit formula for $F\left(\Lambda_{w}, q\right)$ and $F\left(V_{w}, q\right)$. We also show that Λ_{w} and V_{w} are rank-symmetric and rank-unimodal for any separable permutation w.

These results were obtained under the supervision of Richard Stanley when the author was an undergraduate at MIT. (Received September 15, 2010)

