1067-11-2326
Robert Erra* (erra@esiea.fr), ESIEA, 75005 PARIS, France. A Bezoutian algorithm for Egyptian Fractions. Preliminary report.
We present an Egyptian Fraction algorithm, i.e. an algorithm that computes, for a fraction p / q, integers $x_{1}, \ldots x_{k}$ such that:

$$
\frac{p}{q}=\frac{1}{x_{1}}+\frac{1}{x_{2}}+\ldots \frac{1}{x_{k}}
$$

The algorithm relies on the well known property (called Bezout identity in France): integers q and q are coprime if and only if it exists two integers u and v such that $p u+q v=1$, and so, we propose to call it the Bezoutian algorithm.

This algorithm is simple and fast, it has some interesting properties:

- it computes at most p numbers so $k \leq p$ (as the Bleicher algorithm);
- $x_{1}<q^{2}$;
- $x_{1}>x_{2} \ldots>x_{k}$.
- for fractions $4 / q$ if $q \neq 1 \bmod 4$ then $k<=3$.

If we allow the integers x_{i} to be negative, the algorithms helps to prove some known results about the Schinzel conjecture: for $a=2,3,4,5,6,7,8$ then the equation

$$
\frac{a}{q}=\frac{1}{x_{1}} \pm \frac{1}{x_{2}} \pm \frac{1}{x_{3}}
$$

is always solvable for $q>a$.

Eventually, we present an Odd variant that computes, for a fraction p / q with q odd, odd denominators. The algorithm seems to compute a finite developement but we have no proof. (Received September 22, 2010)

