1067-11-33 Maxwell Anselm^{*} (mba210@lehigh.edu) and Steven H Weintraub (shw2@lehigh.edu). A Generalization of Continued Fractions.

We consider a generalization of continued fractions, where the 1 in the "numerator" of the continued fraction is replaced by an arbitrary positive integer N. We refer to this as a cf_N expansion. The algorithm for cf_1 expansions (i.e., classical continued fractions) generalizes to cf_N expansions. Also, there is a natural notion of a *best* cf_N expansion.

Theorem 1. For N > 1, every positive irrational number has infinitely many cf_N expansions and infinitely many of these expansions are nonperiodic. For N > 1, every positive rational number has infinitely many finite cf_N expansions. For N > 2, every positive rational number has infinitely many periodic cf_N expansions and infinitely many nonperiodic cf_N expansions.

Conjecture 2. For N > 1, the best cf_N expansion of a quadratic irrationality is not always periodic.

We also consider the relationship between the best cf_N expansion of \sqrt{E} and solutions to Pell's equation $x^2 - Ey^2 = 1$, where we find that the relationship is considerably more involved than in the classical case.

(This work is the first author's Senior Honors Thesis at Lehigh University, written under the direction of the second author.) (Received June 08, 2010)