1067-11-428 Yinghui Wang* (yinghui@mit.edu), 362 Memorial Dr, Cambridge, MA 02139, and Steven J Miller (Steven.J.Miller@williams.edu), 202 Bronfman Science Center, Williams College, Williamstown, MA 01267. From Fibonacci Numbers to Central Limit Type Theorems.
Every integer is uniquely a sum of non-adjacent Fibonacci numbers $\left\{F_{n}\right\}$, and the average number of summands for integers in $\left[F_{n}, F_{n+1}\right)$ is $n /\left(\varphi^{2}+1\right)$ with φ the golden mean. We prove the following massive generalization: for integers $c_{1}, \ldots, c_{L} \geq 0$ with $c_{1}, c_{L}>0$ and recursive sequence $\left\{H_{n}\right\}_{n=1}^{\infty}$ with $H_{n+1}=c_{1} H_{n}+c_{2} H_{n-1}+\cdots+c_{L} H_{n+1-L}(n \geq L)$, $H_{1}=1$ and $H_{n+1}=c_{1} H_{n}+c_{2} H_{n-1}+\cdots+c_{n} H_{1}+1(1 \leq n<L)$, every integer can be written uniquely as $\sum a_{i} H_{i}$ under natural constraints on the a_{i} 's, and the distribution of the number of summands converges to a Gaussian. Previous approaches were number theoretic, involving continued fractions, and were limited to results on existence and, in some cases, the mean. By recasting as a combinatorial problem and using generating functions and differentiating identities, we surmount these limitations.

Our method generalizes to many other problems. For example, every integer is uniquely a sum of the $\pm F_{n}$'s, such that every two terms of the same (opposite) sign differ in index by at least 4 (3). We prove the distribution of the numbers of positive and negative summands converges to a bivariate normal with correlation $-(21-2 \varphi) /(29+2 \varphi) \approx$ -0.551. (Received September 02, 2010)

