1067-11-923 Lenny Jones and Dan White* (dw9878@ship.edu), Department of Mathematics, Shippensburg University, 1871 Old Main Drive, Shippensburg, PA 17257. Appending Digits to Generate an Infinite Sequence of Composite Numbers II. Preliminary report.
Let $D=\left[d_{1}, \ldots, d_{t}\right]$, where $d_{i} \in\{0,1, \ldots, 9\}$, and let k be a positive integer. We generate an infinite sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ of positive integers by repeatedly appending, in order, one at a time, the digits from the list D to the integer k, in one of four ways: always on the left, always on the right, alternating and starting on the left, or alternating and starting on the right. For example, if $k=35$ and $D=[1,7,9]$, then the sequence generated by appending the digits from D to k in an alternating manner, starting on the left, is:

$$
s_{1}=135, \quad s_{2}=1357, \quad s_{3}=91357, \quad s_{4}=913571, \quad s_{5}=7913571, \ldots
$$

In each of these four situations, we investigate, for various lists D, when there exist infinitely many positive integers k, such that every term of the sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ is composite. (Received September 16, 2010)

