John R. Greene* (jgreene@d.umn.edu), Department of Mathematics and Statistics, University of Minnesota Duluth, Duluth, MN 55812. Limiting structure for some central binomial evaluations.
Series of the form

$$
\sum_{n=0}^{\infty} \frac{(n!)^{2}\left(4 x^{2}\right)^{n}}{(2 n)!(2 m+2 n+1)}
$$

and

$$
\sum_{n=0}^{\infty} \frac{(n!)^{2}\left(-4 x^{2}\right)^{n}}{(2 n)!(2 m+2 n+1)}
$$

are examined. In each case, there is an evaluation of the form

$$
\left(p_{m}(x) f(x)-q_{m}(x)\right) / x^{2 m}
$$

where $f(x)$ is a transcendental function and $p_{m}(x)$ and $q_{m}(x)$ are polynomials with rational coefficients. We prove that for $|x|<1$,

$$
\lim _{m \rightarrow \infty} \frac{q_{m}(x)}{p_{m}(x)}=f(x)
$$

(Received September 16, 2010)

