1067-13-1087 Aline Hosry, Young Su Kim and Javid Validashti* (jvalidas@math.ku.edu). Equality of Powers and Symbolic Powers of Ideals.
Let R be a ring. For a positive integer n, the n-th symbolic power of a prime ideal P is defined as $P^{(n)}=P^{n} R_{P} \cap R$. It is clear from the definition that $P^{n} \subseteq P^{(n)}$, but they need not be the same in general. Therefore, one would like to have conditions that imply the equality. The following question was posed by Huneke in this regard: Let R be a regular local ring of dimension d and P a prime ideal of height $d-1$. If $P^{n}=P^{(n)}$ for all $n \leq d-1$, then is $P^{n}=P^{(n)}$ for all n ? We provide supporting evidences of a positive answer for classes of prime ideals defining monomial curves or having low multiplicities. (Received September 18, 2010)

