1067-13-2118 Lance Bryant* (lebryant@ship.edu), Mathematics Department, Shippensburg University, 1871 Old Main Dr, Shippensburg, PA 17257, and James Hamblin and Lenny Jones. Unique Maximal-Length Factorization in Numerical Semigroups. Preliminary report.
A numerical semigroup $S=\left\langle n_{1}, n_{2}, \ldots, n_{t}\right\rangle$ is a subset of the natural numbers including 0 such that $0 \in S, S$ is closed under addition, and S has finite complement in the natural numbers. We say $n_{1}, n_{2}, \ldots, n_{t}$ are the minimal generators of S, i.e., $S=\left\{\sum c_{i} n_{i} \mid c_{i} \geq 0\right\}$ and any other set of generators contains this set. An element $s \in S$ may be able to be expressed as a nonnegative linear combination of the minimal generators (called a factorization) in several ways. A maximal-length factorization is one that requires the most minimal generators. For example, in $S=\langle 7,10,13\rangle$, we have $62=10+13+13+13+13=7+7+7+7+7+7+10+10=7+7+7+7+7+7+7+13$. Thus 62 has three factorization and the last two are maximal-length factorizations. This talk will focus on maximal-length factorizations when S has three minimal generators with particular interest in when every element of S has exactly one maximal-length factorization. (Received September 22, 2010)

