1067-14-1656 Gretchen L. Matthews (gmatthe@clemson.edu), Department of Mathematical Sciences, Clemson University, Clemson, SC 29634-0975, and Justin D. Peachey* (jpeache@clemson.edu), Department of Mathematical Sciences, Clemson University, Clemson, SC 29634-0975. On Weierstrass semigroups of m-tuples of places on function fields associated with linearized polynomials.

Let q be a power of a prime and \mathbb{F}_q denote the field with q elements. Given a function field F/\mathbb{F}_q and places P_1, \ldots, P_m of degree one, the Weierstrass semigroup $H(P_1, \ldots, P_m)$ is the set of $\mathbf{v} \in \mathbb{N}^m$ such that there exists a function $f \in F$ with poles only at the P_1, \ldots, P_m and the pole order at P_i is v_i for all $1 \leq i \leq m$. For m = 1, its complement is the classically studied Weierstrass gap set.

In this talk we consider the function field $\mathbb{F}_{q^r}(x,y)/\mathbb{F}_{q^r}$ defined by

$$x^u = L(y),$$

where $u|_{q-1}^{q^r-1}$ and $L(y) = \sum_{i=0}^{d} a_i y^{q^i}$ is a linearized polynomial with $a_0, a_d \neq 0$ and q^d distinct roots in \mathbb{F}_{q^r} . The Hermitian and norm-trace function fields are special cases of this function field. We determine the Weierstrass semigroup $H(P_{\infty}, P_{0b_2}, \ldots, P_{0b_m})$ where $2 \leq m \leq q^d + 1$ and give several examples. (Received September 22, 2010)