1067-14-658 Hongbo Li* (hli@mmrc.iss.ac.cn), Key Laboratory of Mathematics Mechanization, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, Beijing 100190, Peoples Rep of China. On the Number of Erdös' Consistent 5-tuples.
Around 1994, Erdös et al. proposed the following challenging problem in enumerative projective incidence geometry, called consistent 5 -tuple problem:
"For ten points $a_{i j}, 1 \leq i<j \leq 5$, in the projective plane, if there are five points $a_{k}, 1 \leq k \leq 5$, in which at least two points are different, such that $a_{i}, a_{j}, a_{i j}$ are collinear for all $1 \leq i<j \leq 5$, we say the five points form a consistent 5 -tuple. Now assume that no three of the $a_{i j}$ are collinear. Is it true that there are only finitely many consistent 5 -tuples?"

This talk is on the following theorems proved by us with Cayley expansion and Cayley factorization techniques:
Theorem 1. For 10 generic points $\left\{a_{i j} \mid 1 \leq i<j \leq 5\right\}$ in the plane, any consistent 5-tuple $\left\{a_{k} \mid 1 \leq k \leq 5\right\}$ satisfies:
(1) $a_{i} \neq a_{j}$ for $i \neq j$.
(2) $a_{i} \neq a_{i j}$ for $i \neq j$.
(3) $a_{i} \neq a_{j k}$ for $i \neq j \neq k$.
(4) $a_{i}, a_{i j}, a_{i k}$ are noncollinear for $i \neq j \neq k$.
(5) $a_{i}, a_{i j}, a_{j k}$ are noncollinear for $i \neq j \neq k$.

If any of the above conditions is violated, there are only finitely many consistent 5 -tuples.
Theorem 2. For 10 generic points $\left\{a_{i j} \mid 1 \leq i<j \leq 5\right\}$ in the plane, there are at most 6 consistent 5 -tuples. (Received September 13, 2010)

