1067-14-658Hongbo Li* (hli@mmrc.iss.ac.cn), Key Laboratory of Mathematics Mechanization, Academy
of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, Beijing 100190,
Peoples Rep of China. On the Number of Erdös' Consistent 5-tuples.

Around 1994, Erdös et al. proposed the following challenging problem in enumerative projective incidence geometry, called consistent 5-tuple problem:

"For ten points a_{ij} , $1 \le i < j \le 5$, in the projective plane, if there are five points a_k , $1 \le k \le 5$, in which at least two points are different, such that a_i, a_j, a_{ij} are collinear for all $1 \le i < j \le 5$, we say the five points form a consistent 5-tuple. Now assume that no three of the a_{ij} are collinear. Is it true that there are only finitely many consistent 5-tuples?"

This talk is on the following theorems proved by us with Cayley expansion and Cayley factorization techniques: Theorem 1. For 10 generic points $\{a_{ij} | 1 \le i < j \le 5\}$ in the plane, any consistent 5-tuple $\{a_k | 1 \le k \le 5\}$ satisfies: (1) $a_i \ne a_j$ for $i \ne j$.

(2) $a_i \neq a_{ij}$ for $i \neq j$.

(3)
$$a_i \neq a_{jk}$$
 for $i \neq j \neq k$.

(4) a_i, a_{ij}, a_{ik} are noncollinear for $i \neq j \neq k$.

(5) a_i, a_{ij}, a_{jk} are noncollinear for $i \neq j \neq k$.

If any of the above conditions is violated, there are only finitely many consistent 5-tuples.

Theorem 2. For 10 generic points $\{a_{ij} | 1 \le i < j \le 5\}$ in the plane, there are at most 6 consistent 5-tuples. (Received September 13, 2010)