Sam L Scholze* (scholzes@uwplatt.edu), 435 Gardner Hall, 1 University Plaza, Platteville, WI 53818, and Ryan L Hotovy (ryan.hotovy@gmail.com), 203 Avery Hall, University of Nebraska-Lincoln, Lincoln, NE 68588. Unitary Equivalence of Vector Spaces over the Binary Field. Preliminary report.
Vector spaces over the binary field \mathbb{Z}_{2} share certain properties with familiar vector spaces over \mathbb{R} such as the existence of bases for spaces. There are, however, many differences. For example, when equipped with the dot product, a vector space over \mathbb{Z}_{2} becomes an indefinite inner product space where non-zero vectors may have zero length. We continue previous work on these spaces by investigating subspaces of \mathbb{Z}_{2}^{n} and ask when two vector spaces are unitarily equivalent. In particular we consider embeddings of subspaces into \mathbb{Z}_{2}^{n} for some n. An algorithm is given showing that every vector space over \mathbb{Z}_{2} can be embedded in this manner. We also investigate the existence of both Parseval frames and dual frames for vector spaces over \mathbb{Z}_{2} and their relation to the Grammian operator. Finally we show that, unlike vector spaces over \mathbb{R}, the existence of a dual frame pair does not necessarily imply the existence of a Parseval frame of the same length for a space. (Received July 26, 2010)

