1067-20-1912 Leah R. Childers* (leah.chiliders@gmail.com), Mathematics Department, Pittsburg State University, 1701 S Broadway, Pittsburg, KS 66762. On Automorphisms of the Hyperelliptic Torelli Group.

The mapping class group is the group of orientation preserving homeomorphisms of a surface up to isotopy. A subgroup of the mapping class group of primary importance is the *Torelli group*, $\mathcal{I}(S_g)$, the kernel of the well-known symplectic representation of the mapping class group. We will discuss the structure of the *symmetric (or hyperelliptic) Torelli group*. More specifically, we will investigate the group generated by Dehn twists about symmetric separating curves denoted $\mathcal{H}(S_g)$. Elements of $\mathcal{H}(S_g)$ act naturally on the symmetric separating curve complex, $C_{\mathcal{H}}(S)$. We will discuss that when $g \geq 5$, $\operatorname{Aut}(C_{\mathcal{H}}(S_g)) \cong \operatorname{SMod}^{\pm}(S_g)/\langle \iota \rangle$, where $\operatorname{SMod}(S_g)$ is the symmetric mapping class group and ι is a fixed hyperelliptic involution. Lastly we will give an algebraic characterization of Dehn twists about symmetric separating curves which will allow us to conclude that $\operatorname{Aut}(\mathcal{H}(S_g)) \cong \operatorname{SMod}^{\pm}(S_g)/\langle \iota \rangle$. (Received September 22, 2010)