1067-22-1287 Kendall Williams* (kendallist@yahoo.com). Elements of Polynomials evaluated at points of βS . Preliminary report.

Given a set S with the discrete topology where both (S, \cdot) and (S, +) are semigroups, one may extend the operations on S to βS , the Stone-Čech Compactification of S. βS is comprised of the ultrafilters on S. With respect to each of its operations individually, βS is a compact right topological semigroup containing S in its topological center.

Let $k \in \mathbb{N}$ and $g(z_1, z_2, \ldots, z_k)$ be an arbitrary polynomial with coefficients in S. We shall evaluate g on certain elements of βS , say p_1, p_2, \ldots, p_k ; making $g(p_1, p_2, \ldots, p_k)$ itself an ultrafilter on S. We characterize subsets of S that must be elements of the ultrafilter $g(p_1, p_2, \ldots, p_k)$. (Received September 20, 2010)