1067-30-1422 Michael J Miller* (millermj@mail.lemoyne.edu), Dept of Mathematics, Le Moyne College, Syracuse, NY 13214. On a refinement of Sendov's conjecture (part 2). Preliminary report.
Let β be a complex number of modulus at most 1. For those polynomials P with a root at β and all roots in the unit disk, define $r(\beta)$ to be the greatest possible distance between β and the closest root of the derivative P^{\prime}. In this notation, Sendov's conjecture claims that $r(\beta) \leq 1$.

We seek the greatest lower bound c of $\{(1-r(\beta)) /(\beta(1-\beta)): 0<\beta<1\}$. If Sendov's conjecture were true, then $c \geq 0$. It is known that $c \leq 3 / 10$, and we have previously conjectured (see $\# 1003-30-616$) that $c=3 / 10$; we show here that $c<3 / 10$. (Received September 21, 2010)

