1067-34-2156 Xinfu Chen (xinfu@pitt.edu), 301 Thackeray Hall, Pittsburgh, PA 15260, and Susmita Sadhu* (sus38@pitt.edu), 301 Thackeray Hall, Pittsburgh, PA 15260. Asymptotic Expansions Of Solutions Of An Inhomogeneous Equation.
I will discuss a joint work with X. Chen on asymptotic behavior of solutions of

$$
\varepsilon^{2} u^{\prime \prime}(x)=u(x)(q(x)-u(x)), \quad \text { for } \mathrm{x} \in[-1,1]
$$

where $\varepsilon>0$ is a small parameter and q is a smooth, bounded function with minimum greater than or equal to 2 . Under the boundary conditions $u(-1)=\alpha_{-}, u(1)=\alpha_{+}$, I will briefly derive asymptotic expansions of solutions that may have up to 3 critical points. The well known Carrier's equation

$$
\varepsilon^{2} y^{\prime \prime}+2\left(1-x^{2}\right) y+y^{2}=1, \quad y(-1)=y(1)=0
$$

can be reduced to this form. If time permits, I will present some solutions of this boundary value problem and show that the conjectured formal asymptotics are correct up to $O(\varepsilon)$. (Received September 22, 2010)

