Britney Hopkins* (bhopkins3@uco.edu). The existence of Multiple solutions for a fourth order nonhomogeneous boundary value problem.
In this talk we consider the fourth order boundary problem, $u^{(4)}=\lambda h\left(t, u, u^{\prime}, u^{\prime \prime}, u^{\prime \prime \prime}\right), t \in(0,1)$, subject to the boundary conditions, $u(0)=u^{\prime \prime}(0)=0, u^{\prime}(1)=a$, and $u^{\prime \prime \prime}(1)=-b$, where $\lambda, a, b \geq 0, a+b>0$, and $h:[0,1] \times[0, \infty) \times$ $(-\infty, 0] \times[0, \infty) \times(-\infty, 0] \rightarrow[0, \infty)$ is continuous. By transforming the fourth order problem into a system of second order equations with homogeneous boundary conditions and then applying the Guo-Krasnosel'skii Fixed Point Theorem, we show the existence of at least three positive solutions. (Received September 16, 2010)

