1067-34-92 **Joshua Mann***, Morehouse College, Atlanta, GA 30314, **Anthony Scrouse**, Morehouse College, Atlanta, GA 30314, and **Ronald E. Mickens**, Clark Atlanta University, Atlanta, GA 30314. *Preliminary Investigation on the Properties of the "Leah"-Cosine and -Sine Functions*[†].

The fundamental trigonometric functions, sine and cosine, may be defined as solutions of ODE, $\ddot{x} + x = 0$, with specific conditions

 $\cos t : \ddot{x} + x = 0;$ x(0) = 1, $\dot{x}(0) = 0,$ $\sin t : \ddot{x} + x = 0;$ x(0) = 0, $\dot{x}(0) = 1.$

Likewise, special cases of the Jacobi elliptic functions are solutions to the following initial value problems

$$cn(t)$$
: $\ddot{x} + x^3 = 0$; $x(0) = 1$, $\dot{x}(0) = 0$,
 $sn(t)$: $\ddot{x} + x^3 = 0$; $x(0) = 0$, $\dot{x}(0) = 1$.

The current work introduces a new pair of functions defined by solutions to the nonlinear differential equations

Lcn(t):
$$\ddot{x} + x^{1/3} = 0$$
; $x(0) = 1$, $\dot{x}(0) = 0$,
Lsn(t): $\ddot{x} + x^{1/3} = 0$; $x(0) = 0$, $\dot{x}(0) = 1$.

We designate these solutions, respectively, the "Leah-cosine" (Lcn) and "Leah-sine" (Lsn) functions. Our presentation will discuss some of their elementary properties and list several open issues related to obtaining a fuller understanding of these functions.

[†]This work was supported in part by the John H. Hopps Scholars Program at Morehouse College. (Received July 23, 2010)