The fundamental trigonometric functions, sine and cosine, may be defined as solutions of ODE, $\ddot{x}+x=0$, with specific conditions

$$
\begin{array}{lll}
\cos t: \ddot{x}+x=0 ; & x(0)=1, & \dot{x}(0)=0 \\
\sin t: \ddot{x}+x=0 ; & x(0)=0, & \dot{x}(0)=1
\end{array}
$$

Likewise, special cases of the Jacobi elliptic functions are solutions to the following initial value problems

$$
\begin{array}{lll}
\operatorname{cn}(t): \ddot{x}+x^{3}=0 ; & x(0)=1, & \dot{x}(0)=0 \\
\operatorname{sn}(t): \ddot{x}+x^{3}=0 ; & x(0)=0, & \dot{x}(0)=1 .
\end{array}
$$

The current work introduces a new pair of functions defined by solutions to the nonlinear differential equations

$$
\begin{array}{ll}
\operatorname{Lcn}(t): \ddot{x}+x^{1 / 3}=0 ; & x(0)=1, \\
\operatorname{Lsn}(t): \ddot{x}(0)=0, \\
x^{1 / 3}=0 ; & x(0)=0,
\end{array} \quad \dot{x}(0)=1 . ~ \$
$$

We designate these solutions, respectively, the "Leah-cosine" (Lcn) and "Leah-sine" (Lsn) functions. Our presentation will discuss some of their elementary properties and list several open issues related to obtaining a fuller understanding of these functions.
${ }^{\dagger}$ This work was supported in part by the John H. Hopps Scholars Program at Morehouse College. (Received July 23, 2010)

