1067-35-1607

Justin L Taylor* (jtaylor2@ms.uky.edu), 906 Patterson Office Tower, University of Kentucky, Lexington, KY 40506-0027. Convergence of Eigenvalues for Elliptic Systems on Perturbed Domains with Low Regularity.

We consider the eigenvalues of an elliptic operator

$$(Lu)^{\beta} = -\frac{\partial}{\partial x_j} \left(a_{ij}^{\alpha\beta} \frac{\partial u^{\alpha}}{\partial x_i} \right) \qquad \beta = 1, ..., m$$

where $u = (u^1, ..., u^m)^t$ is a vector valued function and $a^{\alpha\beta}(x)$ are $(n \times n)$ matrices whose elements $a_{ij}^{\alpha\beta}(x)$ are uniformly bounded measurable real-valued functions such that

$$a_{ij}^{\alpha\beta}(x) = a_{ji}^{\beta\alpha}(x)$$

for any combination of α, β, i , and j. We consider two non-empty, open, disjoint, and bounded sets, Ω and $\widetilde{\Omega}$ in \mathbb{R}^n with low regularity, and add a set T_{ε} of small measure to form the domain Ω_{ε} . Then we show that as $\varepsilon \to 0^+$, the Dirichlet eigenvalues corresponding to the family of domains $\{\Omega_{\varepsilon}\}_{\varepsilon>0}$ converge to the Dirichlet eigenvalues corresponding to $\Omega_0 = \Omega \cup \widetilde{\Omega}$. (Received September 21, 2010)