1067-35-171
Eunkyung Ko* (ek94@msstate.edu), 319 N.Jackson st 1A, Starkville, MS 39759, and Eunkyoung Lee (eunkyoung165@gmail.com) and R. Shivaji (shivaji@ra.msstate.edu). A multiplicity result for a class of infinite positone problems.
We study positive solutions to the singular boundary value problem

$$
\left\{\begin{array}{cc}
-\Delta_{p} u=\lambda \frac{f(u)}{u^{\beta}} & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega
\end{array}\right.
$$

where $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right), p>1, \lambda>0, \beta \in(0,1)$ and Ω is a bounded domain in $\mathbb{R}^{N}, N \geq 1$. Here $f:[0, \infty) \rightarrow(0, \infty)$ is a continuous nondecreasing function such that $\lim _{u \rightarrow \infty} \frac{f(u)}{u^{\beta+p-1}}=0$. We establish the existence of multiple positive solutions for certain range of λ when f satisfies certain additional assumptions. A simple model that will satisfy our hypotheses is $f(u)=e^{\frac{\alpha u}{\alpha+u}}$ for $\alpha \gg 1$. We also extend our results to classes of systems when the nonlinearities satisfy a combined sublinear condition at infinity. We prove our results by the method of sub-super solutions. (Received July 28, 2010)

