1067-35-302Jerome Goddard II* (jg440@msstate.edu), Department of Mathematics and Statistics, P.O.
Drawer MA, Mississippi State, MS 39762, and Eun Kyoung Lee (eunkyoung165@gmail.com)
and Ratnasingham Shivaji (shivaji@ra.msstate.edu). Diffusive logistic equation with
non-linear boundary conditions.

We analyze the steady state solutions of a population model with diffusion and logistic growth, namely,

$$-\Delta u = au - bu^2 - ch(x); \quad \Omega$$

$$\alpha(u)\frac{\partial u}{\partial \eta} + [1 - \alpha(u)]u = 0; \quad \partial \Omega$$

where Ω is a subset of \mathbb{R}^n with $n \ge 1$, a, b > 0, $c \ge 0$, $\alpha(u) : \mathbb{R} \longrightarrow [0, 1]$ is a non-decreasing smooth function, and $\frac{\partial u}{\partial \eta}$ is the outward normal derivative. In particular, our study is focused on a population living in a patch, Ω subset of \mathbb{R}^n with $n \ge 1$, that satisfies a certain nonlinear boundary condition and on its survival when constant yield harvesting is introduced. Our existence results are established by the method of sub-super solutions. (Received August 18, 2010)