1067-37-1576 David S. Richeson* (richesod@dickinson.edu), Department of Mathematics and Comp Sci, Dickinson College, Carlisle, PA 17013, and Jim Wiseman and Fabio Drucker. Symbolic dynamics from partitions with overlapping elements. Preliminary report.
Let X be a compact metric space, $f: X \rightarrow X$ be a continuous map, and $\left\{N_{1}, \ldots, N_{n}\right\}$ be a collection of nonempty compact sets. We say that $\left(s_{0}, s_{1}, \ldots\right)$ is an itinerary for a point x if $f^{i}(x) \in N_{s_{i}}$ for all i. In the classical case of a Markov partition, the sets N_{i} overlap only on their boundaries and map across each other nicely under f; in this case the itineraries give symbolic dynamics in the form of a subshift of finite type. In this work we study the case where the sets N_{i} can overlap nontrivially and can map across each other in more complicated ways. We discuss methods for extracting useful information about the dynamics of f (such as a nonzero lower bound for the topological entropy) from the itineraries. (Received September 21, 2010)

