1067-37-1584 **R E Lampe*** (rlampe@copper.net), 6 Warrenton Circle, Richmond, VA 23229. Orbit distributions in iterated function systems with finitely many forms.

Let $\mathcal{F} = \{f_i\}_{i \in I}$ be a family of measure preserving self maps on a measure space $\{X, \Sigma, \mu\}$, indexed by a finite set I. For a sequence $\alpha = a_1, a_2, \ldots$ with $a_i \in I$, the n-fold composition with respect to α is $F_{\alpha}^n = f_{a_n} \circ F_{\alpha}^{n-1}$. When the n-fold compositions from the family \mathcal{F} take finitely many forms, we show the discrete time distribution for the orbit of $F_{\alpha}^k(x_0)$ is a weighted average of the discrete time distributions of the orbits of the finite forms at the point x_0 for μ -almost all x_0 and for almost all α . This weighted average is arrived at by showing that an independence condition holds by applying the Law of Large Numbers applied to a subsequence of the Radamacher functions. When the discrete time distributions of the finite forms are identical for μ -almost all $x_0 \in X$ the weighted sum of the discrete time distributions reduces to the single valued distribution for any one of the finite forms. (Received September 21, 2010)