1067-39-1780 H Sedaghat* (hsedagha@vcu.edu), Department of Mathematics, Virginia Commonwealth Unviersity, Box 842014, Richmond, VA 23284-2014. Reducing the order of a second-order difference equation with application to a biological model.
Under certain conditions on parameters a second-order difference equation of type

$$
x_{n+1}=x_{n}^{a_{0}} x_{n-1}^{a_{1}} e^{\alpha_{n}-b_{0} x_{n}-b_{1} x_{n-1}}
$$

can be decomposed or factored into a system of two first-order difference equations. I explore these conditions generally for higher order difference equations and then use the results to determine the global dynamics of solutions in the plane of a special case of the above equation that appears in a biological population model. (Received September 21, 2010)

