1067-39-2404 Austin H Jones*, Department of Mathematics, Wake Forest University, Winston-Salem, NC 27109, and Kenneth S Berenhaut, Department of Mathematics, Wake Forest University, Winston-Salem, NC 27109. Asymptotic behavior of solutions to difference equations involving ratios of elementary symmetric polynomials.
This paper studies the behavior of positive solutions of the recursive equation $y_{n}=\left(\frac{e_{i, k}}{e_{j, k}}\right)\left(y_{n-t_{1}}, y_{n-t_{2}}, \ldots, y_{n-t_{k}}\right), 0 \leq$ $i, j \leq k$, where $e_{m, k}$ is the $m^{t h}$ elementary symmetric polynomial on k variables, $t_{l} \geq 1$ for $1 \leq l \leq k, \operatorname{gcd}\left(t_{1}, t_{2}, \ldots, t_{k}\right)=1$ and $y_{-s}, y_{-s+1}, \ldots, y_{-1} \in \mathbb{R}^{+}$, with $s=\max \left\{t_{1}, t_{2}, \ldots, t_{k}\right\}$. A variant of Newton's inequalities is employed. Included amongst the results is a generalization of a particular case of Theorem 4.11 in E. A. Grove and G. Ladas, Periodicities in Nonlinear Difference Equations, Chapman \& Hall/CRC Press, Boca Raton (2004). (Received September 23, 2010)

