1067-39-627

Sukanya Basu* (sukanya.basu@mwsu.edu), 3410 Taft Blvd., Wichita Falls, TX 76308. Global Attractivity of Equilibria and Existence of Prime Period-Two Solutions for a Class of Planar Systems of Difference Equations.

For nonnegative parameters α_1 , β_1 , γ_1 , A_1 , B_1 , C_1 , α_2 , β_2 , γ_2 , A_2 , B_2 and C_2 , consider the system of first-order rational difference equations

$$x_{n+1} = \frac{\alpha_1 + \beta_1 x_n + \gamma_1 y_n}{A_1 + B_1 x_n + C_1 y_n}$$

$$y_{n+1} = \frac{\alpha_2 + \beta_2 x_n + \gamma_2 y_n}{A_2 + B_2 x_n + C_2 y_n}$$

$$, \quad n = 0, 1, 2, \dots$$

$$(1)$$

where

$$\alpha_i + \beta_i + \gamma_i > 0$$
 and $A_i + B_i + C_i > 0$ for $i = 1, 2$.

System (1) consists of 2401 individual planar systems of first-order rational difference equations which include the Leslie-Gower Model from theoretical ecology analyzed by Cushing et. al. in 2006. I will talk about the global behavior of solutions, stability of equilibria and existence of prime period-two solutions for certain subclasses of (1). (Received September 12, 2010)