1067-44-340William E Gryc* (wgryc@muhlenberg.edu), Dept. of Mathematics and Computer Science,
Muhlenberg College, 2400 Chew St., Allentown, PA 18104-5586, and Todd Kemp
(tkemp@math.ucsd.edu), Department of Mathematics, University of California, San Diego, 9500
Gilman Drive, La Jolla, CA 92093-0112. The L^p norm of the Segal-Bargmann Transform.

The Segal-Bargmann projection is a projection $P_{\alpha} : L^2(\mu_{\alpha}) \to \mathcal{H}L^2(\mu_{\alpha})$, where α is any positive real number, μ_{α} is a Gaussian measure on \mathbb{C}^n given by $d\mu_{\alpha} = \left(\frac{\alpha}{\pi}\right)^n e^{-\alpha|z|^2} dm$ (where dm is Lebesgue measure on \mathbb{C}^n), and $\mathcal{H}L^2(\mu_{\alpha})$ is the space of functions in $L^2(\mu_{\alpha})$ that are also holomorphic on \mathbb{C}^n . For $1 , this projection can be extended to a bounded transformation <math>P_{\alpha} : L^p(\mu_{\alpha p/2}) \to \mathcal{H}L^p(\mu_{\alpha p/2})$. In fact, if we denote the norm of the above operator as $\|P_{\alpha}\|_{p \to p}$, it is not difficult to show that $\|P_{\alpha}\|_{p \to p} \leq 2^n$.

In this talk we will show that in the case n = 1, the norm $||P_{\alpha}||_{p \to p}$ can be computed exactly as $||P_{\alpha}||_{p \to p} = \frac{2}{p^{1/p}p'^{1/p'}}$, where p' is defined as $\frac{1}{p'} = 1 - \frac{1}{p}$. For n > 1, we will show that $||P_{\alpha}||_{p \to p} \ge \left(\frac{2}{p^{1/p}p'^{1/p'}}\right)^n$. (Received August 24, 2010)