1067-52-985 **Stoyu Barov** (stoyu@yahoo.com), Institute of Mathematics, Bulgarian Academy of Sciences, 8 Acad. G. Bonchev Str., 1113 Sofia, Bulgaria, and **Jan J. Dijkstra*** (dijkstra@cs.vu.nl), Afdeling Wiskunde, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, Netherlands. *On* closed sets with convex shadows in Hilbert space.

For a subset of the Hilbert space ℓ^2 its *shadows* are the orthogonal projections of the set onto hyperplanes. If \mathcal{P} is a set of projection directions (unit vectors) then two sets are called \mathcal{P} -*imitations* of each other if they have identical shadows in all directions from \mathcal{P} . We present a number of results about closed sets in ℓ^2 that have convex shadows.

Theorem 1. Let B be is a closed convex subset of ℓ^2 that does not contain a hyperplane and let \mathcal{P} be a set of directions such that B is not an $(\operatorname{int} \overline{\mathcal{P}})$ -imitation of B. If C is a closed \mathcal{P} -imitation of B such that $C \neq B$ then C contains a closed set that is homeomorphic to ℓ^2 .

For a set $B \subset \ell^2$ we let the geometric interior denote the interior of B with respect to the closed affine hull of B.

Theorem 2. Let B be a closed convex subset of ℓ^2 with an empty geometric interior and let \mathcal{P} be a somewhere dense set of directions. If C is a closed \mathcal{P} -imitation of B then C = B.

We also discuss the construction of minimal imitations of closed convex sets that show among other things that Theorem 1 is sharp. (Received September 17, 2010)