1067-54-633 Teresita Ramirez-Rosas* (ramirezt@gvsu.edu), GVSU, 1 Campus Dr, A-2-178 MAK, Allendale, MI 49401. A lower bound for the trisecants of a knot. Preliminary report.
Let K be a polygonal knot. A triple $a b c$ is a trisecant of K if a, b and c are points in K, no two of which lie on a common edge of K, that are collinear, in this order, in \mathbb{R}^{3}.

In 1933, Erika Pannwitz proved that each point of K is the starting point of at least κ trisecants for K, where κ is the necessary number of boundary singularities for a disk in \mathbb{R}^{3} bounded by K.

Fix $x \in K$ and let t_{x} denote the number of trisecants having x as an end point. We have show $t_{x} \geq \frac{2 c r(K)+1}{3}$, where $\operatorname{cr}(K)$ is the minimal crossing number of K. If we let x appear not only as an end point but also as a middle point in the trisecant, we have conjectured that $t_{x} \geq \operatorname{cr}(K)$. In this talk, we will present our progress towards proving this conjecture. (Received September 12, 2010)

