Katherine A Grzesik* (kgrzesik@oswego.edu), 9409 Elm St., Chadwicks, NY 13319, and Heather Shappell, Michael Donders and Chelsea Ross. A Poisson Approximation for the Number of kl-Matches I.
Consider a lecture class with a population N. Suppose a student keeps track of the order of students called upon to answer a question. Each student on the roster has l friends before his/her name and l friends after his/her name. A $k l$-match occurs when two students, who are in each other's list of $2 l$ friends or are themselves, are called upon within the k previous questions. Let X_{n} denote the number of $k l$-matches. The definition of the random variable X_{n} assumes that each student has a full window of $2 l+1$ friends and a full window of k previous questions. This scenario is built off of Burkhardt, Godbole, and Prengman's (1994) paper about the distribution of k-matches. The distribution of X_{n}, in an equiprobable case, is approximated by a Poisson random variable if $l k^{2}=\mathrm{o}(N)$. In the non-equiprobable case, the distribution is also approximately Poisson. A coupling could decrease the amount of total distance variation incurred in the Poisson approximation. (Received September 21, 2010)

