Muche A Tilahun* (tmuche@mail.usf.edu), Mathematics Dept, Art and Science, University of South Florida,4202, E. Fowler Avenue, Tampa, FL 33620-5700. Chord graphs associated with DNA recombination in Ciliates. Preliminary report.

Tilahun A Muche, University of South Florida

Graphs with 4 valent rigid vertices and two end points, called assembly graphs, represent DNA recombination that appear in certain species of ciliates. A recombination is modeled by smoothing of the 4 -valent vertices which is guided by certain types of paths in the graph, called polygonal paths. We represent the simple assembly graph by a double occurrence word $w=a_{1} a_{2} \ldots a_{2 n}$ over the finite alphabet \sum with $\left|\sum\right| \geq n$ and we define a prime assembly word if it contains no sub-assembly word. A transversal path $\gamma=\left(a_{1}, e_{1}, a_{2}, e_{2},---, e_{n}, a_{n}\right)$ of a simple assembly graph Γ_{w} corresponds to consecutive sequences of $\operatorname{arcs} e_{i}=\left(a_{i}, a_{i+1}\right)$ for a chord graph and a polygonal path of a assembly graph corresponds to arc-chord-arc sequences of the chord graph. We find assembly number for certain simple assembly graphs that correspond to prime assembly words using arc-chord-arc sequences of the chord graph. (Received September 22, 2010)

