1067-92-498Peter J. Thomas* (pjthomas@case.edu), Department of Mathematics, Case Western Reserve
University, 10900 Euclid Avenue, Cleveland, OH 44106. Synchronization of periodically forced
Ornstein Uhlenbeck processes with reset. Preliminary report.

Ornstein Uhlenbeck processes with fixed threshold and reset appear in a neuroscience context as *noisy integrate-and-fire models*:

$$T_0 = t_0$$

$$dX(t) = (-X + \alpha + \beta h(t)) dt + \sigma dW(t), \quad T_k \le t < T_{k+1}$$

$$T_{k+1} = \inf\{t | \mathcal{S}(T_k, t) \ge \theta\}$$

$$X(T_{k+1}) = x_0,$$

where T_k is a sequence of firing times, X(t) is a strong Markov process, t_0 , x_0 , α , β , θ and σ are (fixed, deterministic) constants, $S(u,t) = \sup\{X(s)|s \in (u,t]\}$, W is a standard Brownian motion and h(t) is a periodic forcing function. Keener, Hoppensteadt and Rinzel (1981) exhaustively classified phase locking in the case $h(t) = \sin(\omega t)$ and $\sigma = 0$. Wan and Tuckwell (1982) obtained analytic expressions for the mean and variance of the first passage time in the case $\beta = 0$. Under suitable assumptions on the constants we prove the existence of a unique invariant measure characterizing the distribution of the firing time phases $T_k \mod T$. (Received September 07, 2010)