1067-Y5-1269 Bruce W. Atkinson* (bwatkins@samford.edu), Dept. of Math/CS, Samford University, 800 Lakeshore Dr., Birmingham, AL 35229. An Undergraduate Research Project on Multiwavelets. Preliminary report.

Construction of the traditional Haar wavelets begins with the Multiresolution Analysis (MRA) V^n , for $n \in \mathbb{Z}$, where V^n consists of square integrable functions that are constant on intervals formed by consecutive multiples of $1/2^n$. An orthonormal basis for V^0 consists of the function $\phi = \chi_{[0,1)}$ and all of its integer translates. An orthonormal basis for the wavelet space $W^0 = V^1 \ominus V^0$ consists of a single wavelet ψ and all of its integer translates.

For this project fix integer j > 0 and consider the MRA V^n consisting of square integrable functions that are constant on intervals formed by consecutive multiples of $1/j^n$. An orthonormal basis for V^0 still consists of the function ϕ and all of its integer translates. However, an orthonormal basis for the wavelet space $W^0 = V^1 \ominus V^0$ now consists of a set of j - 1 functions and their integer translates. The construction of the j - 1 multiwavelets uses a modified version of the Gram-Schmidt process. Applications of these multiwavelets will be given. (Received September 20, 2010)