1067-Z1-1405 Ethan Berkove* (berkovee@lafayette.edu), Department of Mathematics, Lafayette College, Easton, PA 18042. The (Colored Cubes) ${ }^{3}$ Problem.
There are 30 ways to color a cube with six colors where each face is one color. Starting with a collection of the 30 distinct cubes, it is well-known that one can find 27 cubes which can be stacked into a larger $3 \times 3 \times 3$ cube where each 3×3 face is one color. More generally, given an arbitrary collection of n^{3} cubes, when it is possible to assemble the cubes into a larger $n \times n \times n$ cube where each $n \times n$ face is one color? We will answer this question, which was the subject of a summer REU project, and provide some related open questions. (Received September 20, 2010)

