1067-Z1-1702Pedro Tradacete* (tradacete@ub.edu), Dep. of Applied Mathematics and Analysis, University
of Barcelona, Gran Via de les Corts Catalanes 585, 08007 Barcelona, Spain. Positive operators on
Banach lattices and domination properties.

Let us consider the following problems concerning operators between Banach lattices:

Domination problem: Let $0 \le S \le T : E \to F$. Under which conditions on E and F does S satisfy property (P) provided T satisfies (P)?

Power problem: Let $0 \le S \le T : E \to E$. When is there $n \in \mathbb{N}$ such that if T satisfies (P), then \mathbb{R}^n also satisfies (P)?

A classical result of Dodds-Fremlin asserts that for (P) = "being compact", the first problem has a positive answer when E^* and F are order continuous and the second problem is solved for n = 3 (both being optimal). We will present several recent results for other properties such as Banach-Saks property [FT], strict singularity [FHT] and summability [PST].

REFERENCES:

[FHT] J. Flores, F. L. Hernandez, P. Tradacete. Powers of operators dominated by strictly singular operators *Quart.* J. Math. Oxford 59 (2008), 321-334.

[FT] J. Flores, P. Tradacete. Factorization and domination of positive Banach-Saks operators *Studia Math.* 189 (2008), 91-101.

[PST] C. Palazuelos, E. A. Sanchez-Perez, P. Tradacete. Maurey-Rosenthal factorization for p-summing operators and Dodds-Fremlin domination. (preprint) (Received September 21, 2010)