1067-Z1-1945 Dawit Gezahegn Tadesse* (dgt0001@auburn.edu), Mathematics and Statistics, 221 Parker Hall, Auburn University, Auburn, AL 36849-5310, Xuhua Liu (xzl0002@auburn.edu), Mathematics and Statistics, 221 Parker Hall, Auburn University, Auburn, AL 36849-5310, and Tin-Yau Tam (tamtiny@auburn.edu), Mathematics and Statistics, 221 Parker Hall, Auburn University, Auburn, AL 36849-5310. A range associated with skew symmetric matrix.
We study the range

$$
S(A):=\left\{x^{T} A y: x, y \text { are orthonormal in } \mathbb{R}^{n}\right\},
$$

where A is an $n \times n$ complex skew symmetric matrix. It is a compact convex set. Power inequality $s\left(A^{2 k+1}\right) \leq s^{2 k+1}(A)$, $k \in \mathbb{N}$, for the radius $s(A):=\max _{\xi \in S(A)}|\xi|$ is proved. When $n=3,4,5,6$, relations between $S(A)$ and the classical numerical range and the k-numerical range are given. (Received September 22, 2010)

