It is well-known that the classical Cantor set C is generated by the two self-similar mappings S_{1} and S_{2} on [0,1] given by $S_{1}(x)=\frac{1}{3} x$ and $S_{2}(x)=\frac{1}{3} x+\frac{2}{3}$. Let $P=\frac{1}{2} P \circ S_{1}^{-1}+\frac{1}{2} P \circ S_{2}^{-1}$. Then P is a probability measure on $[0,1]$ with the support C. Let X be a random variable taking values on $[0,1]$ with the probability distribution P. Note that X is a continuous random variable. If one wants to send the information about X to some other place by sending some discrete points say n points, in my talk I will show what are the n-best points for $n=1,2, \cdots$. Here by the 'best points' or 'optimal points' it is meant: the points for which the error is minimum with respect to some expect distance. (Received September 22, 2010)

