1017-57-34 Radmila Sazdanovic* (radmila@gwu.edu), 1922 F Street, NW, Washington, DC 20052, and Milena D. Pabiniak (pabiniak@gwu.edu) and Jozef H. Przytycki (przytyck@gwu.edu). Discovering torsion in chromatic graph homology.
We obtain unexpected torsion in chromatic graph homology. Using Mathematica package and Pari we can calculate Tor $H_{A_{m}}^{1,(v-1)(m-1)-(m-2)(n-1) / 2}(G)$ for an arbitrary simple graph with v vertices, any $n \geq 3$ and algebras of truncated polynomials A_{m}. After analyzing different series of graphs, including infinite families of basic polyhedra we formulate the following conjectures:

1. For any prime p there is a simple graph G such that: $Z_{p} \subset \operatorname{Tor} H_{A_{3}}^{1,2 v-3}(G)$ where v denotes number of vertices in G.
2. For any wheel, that is a cone over the polygon $P_{n}, n \geq 4$: $H_{A_{3}}^{1,2 n-1}\left(\operatorname{cone}\left(P_{n}\right)\right)=Z_{3}^{n} \oplus Z_{2} \oplus Z^{n}$ if n is odd, and $Z_{3}^{n-1} \oplus Z^{n+1}$ if n even. This is checked for cones up to 20 crossings.
3. For any complete graph with n vertices $K_{n}, n \geq 4$ the following holds:
$H_{A_{3}}^{1,7}\left(K_{n}\right)=Z_{3}^{n-1} \oplus Z_{2} \oplus Z^{n(n-1)(2 n-7) / 6}$.
This is checked for complete graphs up to 25 crossings.
We expect that if a simple graph G contains a triangle then $\operatorname{Tor}_{H_{A_{3}}^{1,2 v-3}}(G)$ contains Z_{3}.
However, we found a counterexample that the opposite does not hold - the 1-skeleton of the Klein bottle composed of 25 squares. (Received January 31, 2006)
