Russell M. Brown* (russell.brown@uky.edu), Department of Mathematics, University of Kentucky, Lexington, KY 40506, and Irina Mitrea, Department of Mathematics, University of Virginia, Charlottesville, VA 22904. The mixed problem for the Lamé system in a class of Lipschitz domains. Preliminary report.
We consider Lipschitz domains in $\mathbf{R}^{n}, n \geq 3$, and suppose that we have written $\partial \Omega=N \cup D$ with $D \cap N=\emptyset$. In Ω, we consider the mixed problem for the Lamé system.

$$
\begin{cases}L u=0, & \text { in } \Omega \\ u=f_{D}, & \text { in } D \\ \frac{\partial u}{\partial \rho}=f_{N}, & \text { in } N\end{cases}
$$

Here, L is the Lamé operator of linear elasticity and $\partial u / \partial \rho$ is the traction boundary operator. We give conditions on the domain Ω and the sets D and N so that we can find a solution to the mixed problem which satisfies the estimate

$$
\|\nabla u\|_{L^{2}(\partial \Omega)} \leq C\left(\left\|f_{N}\right\|_{L^{2}(N)}+\left\|\nabla_{t} f_{D}\right\|_{L^{2}(D)}+\left\|f_{D}\right\|_{L^{2}(D)}\right)
$$

(Received September 12, 2006)

