1025-05-11 Jószef Balogh and Ryan Martin* (rymartin@iastate.edu), 396 Carver Hall, Department of Mathematics, Ames, IA 50010, and András Pluhár. The diameter game.
A large class of the so-called Positional Games are defined on the complete graph on n vertices. The players, Maker and Breaker, take the edges of the graph in turns, and Maker wins iff his subgraph has a given-usually monotone - property. In this talk, we introduce the d-diameter game, which means that Maker wins iff the diameter of his subgraph is at most d. We investigate the biased version of the game; i.e., when the players may take more than one, and not necessarily the same number of edges, in a turn. The 2-diameter game has the property that Breaker wins the game in which each player chooses one edge per turn, but Maker wins as long as he is permitted to choose 2 edges in each turn whereas Breaker can choose as many as $0.25 n^{1 / 7} /(\ln n)^{3 / 7}$.

In addition, we investigate d-diameter games for $d>2$. The diameter games are strongly related to the degree games. Thus, we also provide a generalization of the degree game for the biased case. (Received November 02, 2006)

