Given a distribution of pebbles on the vertices of a graph G, a pebbling move takes two pebbles from one vertex and puts one on a neighboring vertex. The pebbling number $\Pi(G)$ is the least k such that for every distribution of k pebbles and every vertex r, a pebble can be moved to r. The optimal pebbling number $\Pi_{O P T}(G)$ is the least k such that some distribution of k pebbles permits reaching each vertex.

Using new tools ("Squishing" and "Smoothing" Lemmas), we give short proofs of prior results on these parameters for paths, cycles, trees, and hypercubes, a new linear-time algorithm for computing $\Pi(G)$ on trees, and new results on $\Pi_{O P T}(G)$. If G is connected and has n vertices, then $\Pi_{O P T}(G) \leq\lceil 2 n / 3\rceil$ (tight for paths and cycles). Let $a_{n, k}$ be the largest $\Pi_{O P T}(G)$ over n-vertex connected graphs with $\delta(G) \geq k$. Always $2(n-k) /(k+1) \leq a_{n, k} \leq 4 n /(k+1)$, with a better lower bound when 3 divides k. Better upper bounds hold for n-vertex graphs with minimum degree k having large girth; a special case is $\Pi_{O P T}(G) \leq 16 n /\left(k^{2}+17\right)$ when G has girth at least 5 and $k \geq 4$. Finally, we compute $\Pi_{O P T}(G)$ in special families such as prisms and Möbius ladders. (Received January 21, 2007)

