Joseph Brennan, Department of Mathematics, University of Central Florida, Orlando, FL 32816, and Guantao Chen* (gchen@gsu.edu), Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303. Minimal Generators of cut-ideals of Graphs without K_{4}-minors. Preliminary report.
Let $G=(V, E)$ be a graph and \mathbb{K} be a field. We associate each edge-cut $[A, B]$ of G with a coordinate $q_{A \mid B}$ and each edge $u v$ with two coordinates $\left(s_{u v}, t_{u v}\right)$. Let

$$
\begin{aligned}
& \mathbb{K}[q]:= \mathbb{K}\left[q_{A \mid B} \mid[A, B] \text { is an edge-cut of } G\right] \\
& \mathbb{K}[s, t]:=\mathbb{K}\left[s_{u v}, t_{u v} \mid u v \in E\right] \text { and } \\
& \phi_{G}: \mathbb{K} \mapsto \mathbb{K}[s, t], \quad q_{A \mid B} \mapsto \Pi_{u v \in[A, B]} s_{u v} \Pi_{x y \in E-[A, B]} t_{x y} .
\end{aligned}
$$

The kernel $I(G)$ of ϕ_{G} is called the cut-ideal of the graph G. Sturmfels and Sullivant conjectured that I_{G} is generated by quadrics if and only if G contains no K_{4}-minor. We will address the recent progresses on this conjecture. (Received January 21, 2007)

