Tao Jiang, Miami University, Department of Mathematics and Statistics, Oxford, OH 45056, Manley Perkel* (manley.perkel@wright.edu), Wright State University, Department of Mathematics and Statistics Dayton, OH 45435, and Dan Pritikin, Miami University, Department of Mathematics and Statistics, Oxford, OH45056. Cyclic Arrangements of k-sets with Local Intersection Constraints. Preliminary Report. Preliminary report.
Given positive integers n, k, s with $0<k<n$, does there exist a cyclic ordering of the k-sets of $\{1,2, \ldots, n\}$ such that every s consecutive k-sets are pairwise intersecting? For a given n and k, let $f(n, k)$ denote the maximum s for which such an ordering exists. Phrased in terms of graphs, $f(n, k)$ is the largest d such that the complement of the Kneser graph $K(n, k)$ contains the d^{\prime} 'th power of some Hamiltonian cycle in that complement.

For each $n \geq 6$ we show that $f(n, 2)=3$. We show that $f(n, 3)$ equals either $2 n-8$ or $2 n-7$ when n is sufficiently large, conjecturing that $2 n-8$ is the correct value. For each $k \geq 4$ and n sufficiently large we show that

$$
\frac{2 n^{k-2}}{(k-2)!}-\frac{\left(\frac{7}{2} k-2\right) n^{k-3}}{(k-3)!}+O\left(n^{k-4}\right) \leq f(n, k) \leq \frac{2 n^{k-2}}{(k-2)!}-\frac{\left(\frac{7}{2} k-c\right) n^{k-3}}{(k-3)!}
$$

where c is an absolute positive constant. This is a preliminary report. (Received January 23, 2007)

