1025-05-230Zoltan Furedi* (z-furedi@math.uiuc.edu), University of Illinois at Urbana-Champaign,
Urbana, IL 61801. A proof of the stability of extremal graphs.

We present a concise, contemporary proof (i.e., one using Szemerédi's regularity lemma) for the following classical stability result of Simonovits 1968:

If an *n*-vertex *F*-free graph *G* is almost extremal, chr(F) = p + 1, then the structure of *G* is close to a *p*-partite Turán graph. More precisely, for every graph *F* and $\varepsilon > 0$ there exists a $\delta > 0$ and a bound n_0 (depending on *F* and ε) such that if $n > n_0$ and

$$e(G) > (1 - \frac{1}{p})\binom{n}{2} - \delta n^2$$

then one can change (add and delete) at most εn^2 edges of G and obtain a complete p-partite graph. (Received January 23, 2007)