1025-05-43 Richard H Schelp* (rschelp@memphis.edu), 373 Dunn Hall, Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152-3240, and V Nikiforov, 373 Dunn Hall, Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152-3240. Making the Components of a Graph k-Connected.
For every integer $k \geq 2$ and graph G, consider the following natural procedure: if G has a component G^{\prime} that is not k-connected, remove G^{\prime} if $\left|G^{\prime}\right| \leq k$, otherwise remove a cutset $U \subset V\left(G^{\prime}\right)$ with $|U|<k$; do the same with the remaining graph until only k-connected components are left or all vertices are removed.

We are interested when this procedure stops after removing $o(|G|)$ vertices. Surprisingly, for every graph G of order n with minimum degree $\delta(G) \geq \sqrt{2(k-1) n}$, the procedure always stops after removing at most $2 n(k-1) / \delta$ vertices. We give examples showing that our bounds are essentially best possible. (Received January 08, 2007)

