1025-05-43Richard H Schelp* (rschelp@memphis.edu), 373 Dunn Hall, Department of Mathematical
Sciences, University of Memphis, Memphis, TN 38152-3240, and V Nikiforov, 373 Dunn Hall,
Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152-3240. Making
the Components of a Graph k-Connected.

For every integer $k \ge 2$ and graph G, consider the following natural procedure: if G has a component G' that is not k-connected, remove G' if $|G'| \le k$, otherwise remove a cutset $U \subset V(G')$ with |U| < k; do the same with the remaining graph until only k-connected components are left or all vertices are removed.

We are interested when this procedure stops after removing o(|G|) vertices. Surprisingly, for every graph G of order n with minimum degree $\delta(G) \ge \sqrt{2(k-1)n}$, the procedure always stops after removing at most $2n(k-1)/\delta$ vertices. We give examples showing that our bounds are essentially best possible. (Received January 08, 2007)