1015-13-221 Lee Klingler* (klingler@fau.edu), Department of Mathematical Sciences, 777 Glades Road, Boca Raton, FL 33431, and Jason Boynton (jboynto5@fau.edu), Department of Mathematical Sciences, 777 Glades Road, Boca Raton, FL 33431. The n-generator property in rings of integer-valued polynomials.
Let D be an integral domain with field of fractions Q, let E be a non-empty finite subset of D, and $\operatorname{set} \operatorname{Int}(E, D)=\{f \in$ $Q[X]: f(E) \subseteq D\}$, the ring of integer-valued polynomials on D with respect to the subset E. We say that the ring R has the n-generator property if each finitely generated ideal of R can be generated by a list of n elements, and we say that R has the strong n-generator property if each finitely generated ideal of R can be generated by a list of n elements in which the first generator in the list is an arbitrary non-zero element of the ideal.

Chapman, Loper, and Smith showed that $\operatorname{Int}(E, D)$ has the strong 2-generator property if and only if D has the 1 -generator property (that is, D is a Bezout domain). Inspired by their result, we prove that, for any integer $n \geq 2$, $\operatorname{Int}(E, D)$ has the strong $(n+1)$-generator property if and only if $\operatorname{Int}(E, D)$ has the n-generator property if and only if D has the n-generator property. (Received February 06, 2006)

